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Continuum description of rarefied gas dynamics. Il. The propagation of ultrasound
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The equations of fluid dynamics developed in Paget.IChen, H. Rao, and E. A. Spiegel, Phys. Re\64:
046308(2001)] are applied to the study of the propagation of ultrasound waves. There is good agreement
between the predicted propagation speed and experimental results for a wide range of Knudsen numbers.
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I. STATEMENT OF THE EQUATIONS from kinetic theory, ar¢4—6]
Modern theoretical studies of the influence of dissipation dp+V-(pu)=0, (1.1
on the propagation of sound on the basis of the Navier-
Stokes equations may be said to have begun with the work of p(du+u-Vu)+V-P=0, 1.2

Kirchhoff [1]. A principal aim of that and subsequent studies
is to determine how the propagation speed and the rate of
dissipation of the waves depend on their frequencies. For this
problem, the predictions from the standard Navier-Stokes
(NS) equations of fluid dynamics do not agree well with where p is mass densityu is the velocity field, T is the
experiments when the periods of the sound waves become &mperaturep is the pressure tensd@ is the heat flux vec-
short as the mean flight times of the particles of the gas, thdpr, and the colon stands for a double dot product. We have
is, when we enter the ultrasound regime. not included an external force.

There are two directions from which to enter that regime. These equations express Newton’s laws of motion for a
We can begin with a gas of freely steaming particles andcontinuum in phenomenological theories and they are a for-
introduce weak interactions among them. In that case, wéal consequence of most kinetic theories. Where approaches
may with Uhlenbeck and Foll@] ask, “How is it possible to  to the derivation of these equations from kinetic theory may
impose on the random motion of the molecules the orderediffer is in the expressions for the higher momemsndQ.
motion ... which a sound wave represents?” In the moderiThe derivations from kinetic theory are important since they
language of dynamical systems theory, this could be seen geovide formulas for the transport coefficients that appear in
a problem of synchronization in which we witness increasingthe specific expressions for the pressure tensor and the heat
numbers of particles going into cooperative motion until allflux. However, not all treatments of the kinetic theory give
are engulfed. On the other hand, we may start from the cagde same explicit formulas fdP and Q, there being differ-
of continuum mechanics and attempt to extend the validity ofnces of degree and style of the approximations used. Of
that description to the case of longer and longer mean freeourse, when the mean free path of the constituent particles
paths. It is unlikely that in either case we can successfullys sufficiently short compared to all macroscopic lengths in
traverse the full range of possible conditions, but we maythe problem, there is no real disagreement, since the standard
expect to encounter an interesting transition between the twhlavier-Stokes forms work well enough for most purposes.
regimes. But when the macroscopic lengths become short and are

In this paper, we examine how well the fluid dynamical comparable to the mean free paths of the particles, those
description of Paper | of this seri¢8] extends into the do- standard results do not agree with experiment, as we shall
main where the particle mean free paths are comparable ®ee. Therefore we must ask whether there is a continuum
the characteristic macroscopic length scale of the medium. Iapproximation that may provide improved treatments of such
Paper |, we derived an extension of the fluid dynamical equaproblems.
tions that we hope may offer an improvement of this kind To test whether the expressions frand Q derived in
and, in the present paper, we study their linear form and th&aper | from the relaxation model of kinetic the¢#/8] may
resultant dispersion relation for sound waves. In this sectiorfulfill this need, we here apply them to study of the propa-
we restate the equations given in Paper | before going on tgation of ultrasound. In the relaxation model, the relaxation
the straightforward determination of the dispersion relatiortime 7 may be taken to be of the order of the mean flight
they imply for the linear theory of sound waves. time of particles, where the mean speed is of the order of the

The basic form of the macroscopic equations derivedspeed of sound. Then, we have

3pR(6;T+u-VT)+P:Vu+V.-Q=0, 1.3
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have small amplitudes with, for examples|<1. From the

o
T=—, (1.4 linearization of Eq.(1.6) we obtain
pNT

where « is a constant that depends on the collision cross

section and the gas constant and we have ignored a possibig¢e further assume that there is no background motion so

dependence of the particle cross-section time on particlehatu is small and needs no subscripts.

speed. In analogy with Eq(2.1) we write for the pressure tensor,
The results in Paper | are based on an expansian up  the linearized form

to first order. Those expansions led to a pressure tensor,

w=¢+0. (2.2

DInT 2
PZ[p—,u,( Dt +§V-u) I—uE, (1.5 where
where T=wl-7(3,0+5V-u)l—7E, (2.4)
p=RpT, (1.6p  wherer is evaluated for the state variables of the background
medium andE is small. Similarly, since there is no zeroth
R is the gas constant, order heat flux, we get for the linearized heat flux,
Eij:(3_w+(?_w_zv,u6ij (17) Q:_VOTOV(G—’_W)_g/*LOU')tU' (25)
an (9Xi 3 ’ ' . i i
The quantitieguy= 7py and g are the viscosity and conduc-
w=1p (1.9 tivity evaluated in terms of the state variables for the con-
stant background medium.
is the viscosity, and/Dt=d,+u-V. The result foru, to- The linearization of Eq(1.1) is
gether with Eq(1.4), implies Maxwell’'s conclusion that vis-
cosity does not depend on density for simple gases. For the d$p+V-u=0. (2.6

heat flux, we obtained A compact form of the linearized Eql.2) is

(1.9 po du+poV - T=0. 2.7

5 u
Q==—nVT=9TVIinp—spupr,

. . Wh take the di f HQ. d Eq(2.6),
where =3 uR is the conductivity. Both Eq(1.5) and Eq. ﬁndetr;];\t/e ake the divergence of B@.7) and use Eq(2.6

(1.9 carry errors of order? that are not indicated explicitly.

These formulas foP andQ are not expressed explicitly pod2p—poVV:T=0. (2.9
in terms of the fluid fields. Rather, their expressions involve
some of the same time derivatives of these fields that appegfiom Eq.(2.4) we find that
in the fluid equations. Here is the central difference between
our results and those obtained in the Chapman-Enskog ap- V.- T=Vw—79,V0-57V-(V-u)—7V-E. (2.9
proach. In the latter, partial derivatives with respect to time
are eliminated by the use of lower order results. Though wéVe see from Eq(1.7) that
do not use that elimination procedure in deriving the closure
relations, we can nevertheless readily recover the Navier- V-E=V2Uu+3V-(V-u). (2.10
Stokes results from ours, when—0, as we described in ] ]
paper |. However, even though both theories formally havel hen, with the help of Eq(2.6), we find
first-order accuracy irr, the results from them are signifi-
cantly different at >I/<nudsen numbers of order unity, gas we V- T=Vo—10,Y(0=¢)—7V?U. (213

shall see in what follows. On using Eq.(2.6) again, we find that

Il. THE LINEAR THEORY VV:T=V2w—79,V2(0—24¢), (2.12

We consider the evolution of perturbations on a uniform
medium and define perturbation variables 0, and w
through the relations

which we may introduce into Eq2.8). Next we define the
Laplacian speed of souradand the kinematic viscosity, as
in

p=po(l+¢), T=To(1+6), and p=pyl+w),

2.1 a2=@ and ,,O:ﬂ_ (2.13
Po Po
wherepq, Ty, andpg are the constant background values of

the thermodynamic fields. The perturbation quantities alWe then obtain the dissipative wave equation
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(92— a2V?—2v40,V?) p+ (vgd,—a?)V20=0.
(2.14

To complete this discussion, it is useful to introduce the

thermal diffusivity

7o
poCp ’

Ko=

(2.195

whereC,=3R. Thus, 7oTo=5poko. This is used in the lin-
earized heat equation,

where we may write
V-Q=—3pokoVA($+20)+3porodid.  (2.17)
Sincevy=a?r, we then find
10a°7" _, oi 2252 5@1272V2 o
Tﬁt_g_ §7‘ (9t—§7(9t_§_0. ¢=0,
(2.18
where
14
o=— (2.19
Ko

is the Prandtl number of the undisturbed medium.

Finally, to further simplify the appearance of these formu-
las, we let the unit of time be and the unit of length bar.
Then our linearized equations for sound waves are

(32-V2-24,V?) p+(3,—1)V?0=0,  (2.20

(5&2— EVz—za )¢+(3a - EJVZ) 6=0. (2.21)
t o t t o . .
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For comparison, we report that the dispersion relation for the
Navier-Stokes equations is

5
33— k2s?+5 k2s— ;k4=0.

4 k?+1
30

5
44
g

(3.2

A. Frequencies

To get a feel of what these results mean, we look at free
modes for whichk is real. Then we set=iw+ a wherea
andw are also real. When we introduce this into E2}1) we
find that there is dtherma) mode withw=0 and a pair of
(acousti¢ modes whose frequencies satisfy

5 2(10-0) ,  5(oc+5Kk?)
— a+
o(3+5k?) o(3+5k?)

w?=3a?

3a k2, (3.3
which gives the frequencies of sound waves. As we may
confirm, « is of order unity for largek and it grows in pro-
portion tok? for smallk. Hence, for both very large and very
smallk, the last term on the right of Eq3.3) is the largest
one on that side. So we may write the uniform approximation

_5(c+5Kk%)

2=k
o(3+5k) "

w

(3.9

For smallk, this gives the phase speed/k= = /5/3,
which is the usual speed of sound for an adiabatic sound
wave, as is to be expected for very long wavelengths. For
largek, we obtain the phase speedk= =+ \/5/c.

For the NS equations with zero bulk viscosity there is the
same number of modes: a thermal mode with zero frequency
and sound waves with

2

4k
—+1

2(5 5
2_q 2_ %2 2 > 2
w°=3«a +4 | k‘a+ 3|35 k=.

3\o

(3.5

As expected, the two sets of equations agree in the limit of
very smallk, where the NS equations return the phase speed

For comparison we note that the analogous linear equations \/5/3. But for largek, the differences between the two

for the Navier-Stokes cag&ith zero bulk viscosity are

(7~ V2=59,V)p—V?0=0, (2.22

5
—20,p+| 30— ;VZ) 6=0. (2.23

Ill. THE DISPERSION RELATIONS

We may seek solutions to the linear equati¢220 and
(2.21) in which ¢ and 6 vary like exp{kx—st). Since the
mean free path is the unit of length, the wave numker

which is nondimensional, is effectively the Knudsen number

for this problem. The dispersion relation is

5
—k2+ 1)kzs——k4=0.
g g

(3.1

10
(3+5k?)s®— (;—1) k?s?+5

theories become qualitative. With the Navier-Stokes equa-
tions, we find that at largk instead of reaching a finite limit,
the phase speed is proportionalkdor largek. As we shall
see when we look at the experimental results, the NS predic-
tion is qualitatively wrong; the phase speed goes to a finite
value at largek.

B. Damping rates
The equation for the damping rate is
k?a?—

10
(3+5k2)a3—(;—1 3(3+5k?) w?

5
—5| 1+ —Kk?|K?|a+
g

10 5
—— 1) K2w?— —k*=0. (3.6
ag g

For the thermal mode, for which=0, we find the damp-
ing ratesa=k? o for smallk and = 1/5 for largek. Thus,
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there is very little damping for long waves while short waves 1.0

are damped on the collisional time scale. Moreover, on ex- g
amination of these two limits, we see that they both emerge
from the balance of the same two terms in E86). Hence 2 08

5
we may write the approximate formula i;‘” 0.7
O
k2 '<_3 0.6 e
a= o+5K2 (3.7 i 0,5—_ < This work
2 044 - —-—~ -7 ,/- Sirovich and Thurber
as a reasonable approximation to the damping rate fdy, all E 7 -
in the thermal mode. 5 %97 e NS
Similarly, in the case of sound waves, we see that = 02 e ET (16215 moments)
also the result of the balance between the same two terms i, ] /,/“
Eg. (3.6) in the limits of large and smak. Hence, we find o Qe
that for sound waves, to good approximation, the damping 0-010_2 A TR Y

rate is given by Inverse of Knudsen Number (wt)™

_ (10— 0)k?w?—5k* 39 FIG. 1. The inverse phase velocity as a function of inverse fre-
30(3+5k?)w?—5k*(o+5k?)’ ' quency.

a

where  is given in Eq.(3.4). For long wavelengths, the Plex. Thus, in Eq(3.1) we lets=iw and we find that the
damping is again slight since it goes to zero like7  equation fork becomes
—0)/(60)]k2. For largek, we obtain the finite limite= (5

10
—0)/(50). _ ,  Z(1-5iw)k*+ 5iw3—5iw—(——1)w2 k2+3iw3=0.
For the Navier-Stokes equations, the damping rate is@ o
given by 4.1
5 4K2 We may similarly obtain such an equation for the NS case,
30— | 2+ 4|K2a?+ 5(_+1 K2—9w?|a Eq.(3.2). In order to emphasize the results for large Knudsen
o 3o number we plot the results in the manner used, for example,
5 5 by Cercignani4]. That is, we introduce the quantity
+|=+4|k*w?— —k*=0. :
p 4 k°w Uk 0 (3.9 ) 5K2
K =352 4.2

The damping rate for the acoustic modes also goeskfke

for small k for both the thermal mode and the acousticwhereK is a normalized inverse propagation speed. The fac-
modes. For the acoustic modes, the damping rater is tor 5/3 is included so that the phase speed is nondimension-
=[(20+1)/(30) k% so that we get the same wave numberalized on the Laplaciator adiabati¢ speed of sound, rather
dependence, but with a different coefficient than is obtainedhan the Newtoniaror isothermal speed of sound as above.
from our equations in the smadllimit. However, for increas- Then we find that
ing k, the NS damping rategrow like k? for sound waves,
which is in disagreement with experimeigx]. 4 ( 1) (10 )
(1-5iw)K*+=|5i| w— —|—| =—1] |k

3 1) o

IV. COMPARISON WITH EXPERIMENT 4.3

Though the study of free modes in the previous section is To see how this representation contains the results for free
intuitively clear, it does not directly represent the way ex-modes, we note that, in the limii— 0, Eq.(4.3) reduces to
periments on sound propagation are usually carried out. IK?=1. That is, for low frequencies, the usual adiabatic
the experiments, it is more typical that one drives the fluid asound speed is recovered. In throre interestingopposite
a real, fixed frequency and then studies the propagation dimit, w—c, we obtainK?= ¢/3 for the propagative modes.
waves in space. The forcing may be accomplished by vibratThus we see that, in the limit of forcing at high frequency,
ing the end wall of a tube containing gas at a fixeeal) sound waves propagate with phase speed$/3, indepen-
frequencyw and observing the propagation down the tube.dently of frequency. The data shown in the accompanying
To model this procedure in full detail would involve a careful figure (Fig. 1) confirm this independence of frequentyr
treatment of the forcing procedure, which usually requiresvave numberof the speed of propagation of ultrasound. The
attention to boundary conditions. However, in this first re-observed nondimensional phase speed is 0.47.
connaissance of the way our equations describe sound The Prandtl number found from the relaxation model of
waves, we shall adopt a standard theoretical pra¢tifand  kinetic theory, either by the methods of Chapman and En-
simply fix the wave frequencw in the dispersion relation skog or those described in paper |, is unity. With this value,
and compute the resulting which will typically be com- we obtain 0.51 for the limiting phase speed, so this repre-

046309-4



CONTINUUM DESCRIPTION OF ... .. ... PHYSICAL REVIEW B4 046309

sents a small quantitative error. However, the valuesof 1/w. Since our limiting value for RK was found to be/a/3,
found in kinetic theory depends on the atomic model usedihe remarkable agreement of our results with experiment
that is, on the nature of the collision term. ThOUgh the I’E|aX-OWeS Something to our using the experimenta| value of 2/3
ation model gives the explicit value unity fer, the value for ¢ for limiting value ReK—0.47. Nevertheless, even
found with the traditional Boltzmann equation for hard without this choice, the results would be adequate and com-
spheres is 2/3. This difference has nothing to do with theparable to those shown for the moment meth&d] with
approximation methodour procedure givesr=2/3 when 16215 momentgshort dashes Other theoretical studies of
applied to the Boltzmann equatiphut is a consequence of ultrasound are based on direct solution of the Boltzmann
the nature of the form of the atomic interactions that isequation[4,2] and we show the results of Sirovich and
adopted. We therefore follow a common practice of puttingThurber [13] obtained in this way(medium dashes for
the empirical Prandtl number into the theoretical resultsvhich the Prandtl number automatically has the value 2/3.
when comparing with experiments. Since the experimental
data we shall refer to are for noble gases whose values of
are 0.6 or 0.7 we shall here adopt the vaitre 2/3 suggested In the study of the thermal damping of sound waves by
by the Boltzmann equation. When we use that value of thelectromagnetic radiatiofil4], one finds that, for thermal
Prandtl number in evaluating the phase speed, we oltain times much less than the acoustic period, sound propagates
=/2/3=0.471. Even without this adjustment, the results forat the isothermal speed of sound with negligible dissipation.
the propagation of ultrasound are good, but we would proin the opposite limit of long thermal times, there is also little
pose to anyone thinking of using our equations from thisdissipation, but propagation is at the adiabatic speed of
first-order development from the relaxation equation to intro-sound. The experiments, and the solution of the Boltzmann
duce this phenomenological improvement of the theory.  equation show similar behavior when the relevant parameter
In the accompanying figuré-ig. 1), we show the varia- is the ratio of the collisional relaxation time to the acoustic
tion of ReK as a function of X from a number of sources. period. Our equations, as well as those of the moment
The experimental valugd 0,11 are indicated as individual method(with tens of thousands of momeptseproduce this
points(the diamondsand they appear to be tending toward abehavior but the Navier-Stokes equations do not. Moreover,
nonzero constant value at high frequency. This is qualitawhen the Prandtl number is chosen to be that of the experi-
tively in accord with our results, here shown as a solid linemental gas, the quantitative agreement becomes very good.
for the case olr=2/3, and it is in stark disagreement with In the next installation of this series, we shall compute the
the prediction from the Navier-Stokes equatidlasig dashes profile of a stationary shock wave. As we shall see, the
with double dotg which predict that R& goes to zero like agreement with the experiments is good in that case too.

V. CONCLUSION
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