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Continuum description of rarefied gas dynamics. II. The propagation of ultrasound
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The equations of fluid dynamics developed in Paper I@X. Chen, H. Rao, and E. A. Spiegel, Phys. Rev. E64,
046308~2001!# are applied to the study of the propagation of ultrasound waves. There is good agreement
between the predicted propagation speed and experimental results for a wide range of Knudsen numbers.
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I. STATEMENT OF THE EQUATIONS

Modern theoretical studies of the influence of dissipat
on the propagation of sound on the basis of the Nav
Stokes equations may be said to have begun with the wor
Kirchhoff @1#. A principal aim of that and subsequent studi
is to determine how the propagation speed and the rat
dissipation of the waves depend on their frequencies. For
problem, the predictions from the standard Navier-Sto
~NS! equations of fluid dynamics do not agree well wi
experiments when the periods of the sound waves becom
short as the mean flight times of the particles of the gas,
is, when we enter the ultrasound regime.

There are two directions from which to enter that regim
We can begin with a gas of freely steaming particles a
introduce weak interactions among them. In that case,
may with Uhlenbeck and Ford@2# ask, ‘‘How is it possible to
impose on the random motion of the molecules the orde
motion . . . which a sound wave represents?’’ In the mod
language of dynamical systems theory, this could be see
a problem of synchronization in which we witness increas
numbers of particles going into cooperative motion until
are engulfed. On the other hand, we may start from the c
of continuum mechanics and attempt to extend the validity
that description to the case of longer and longer mean
paths. It is unlikely that in either case we can successf
traverse the full range of possible conditions, but we m
expect to encounter an interesting transition between the
regimes.

In this paper, we examine how well the fluid dynamic
description of Paper I of this series@3# extends into the do-
main where the particle mean free paths are comparab
the characteristic macroscopic length scale of the medium
Paper I, we derived an extension of the fluid dynamical eq
tions that we hope may offer an improvement of this ki
and, in the present paper, we study their linear form and
resultant dispersion relation for sound waves. In this sect
we restate the equations given in Paper I before going o
the straightforward determination of the dispersion relat
they imply for the linear theory of sound waves.

The basic form of the macroscopic equations deriv
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n
r-
of

of
is
s

as
at

.
d
e

d
n
as
g
l
se
f
e

ly
y
o

l

to
In
a-

e
n,
to
n

d

from kinetic theory, are@4–6#

] tr1“•~ru!50, ~1.1!

r~] tu1u•“u!1“•P50, ~1.2!

3
2 rR~] tT1u•“T!1P:“u1“•Q50, ~1.3!

where r is mass density,u is the velocity field,T is the
temperature,P is the pressure tensor,Q is the heat flux vec-
tor, and the colon stands for a double dot product. We h
not included an external force.

These equations express Newton’s laws of motion fo
continuum in phenomenological theories and they are a
mal consequence of most kinetic theories. Where approa
to the derivation of these equations from kinetic theory m
differ is in the expressions for the higher moments,P andQ.
The derivations from kinetic theory are important since th
provide formulas for the transport coefficients that appea
the specific expressions for the pressure tensor and the
flux. However, not all treatments of the kinetic theory gi
the same explicit formulas forP and Q, there being differ-
ences of degree and style of the approximations used
course, when the mean free path of the constituent parti
is sufficiently short compared to all macroscopic lengths
the problem, there is no real disagreement, since the stan
Navier-Stokes forms work well enough for most purpos
But when the macroscopic lengths become short and
comparable to the mean free paths of the particles, th
standard results do not agree with experiment, as we s
see. Therefore we must ask whether there is a continu
approximation that may provide improved treatments of su
problems.

To test whether the expressions forP and Q derived in
Paper I from the relaxation model of kinetic theory@7,8# may
fulfill this need, we here apply them to study of the prop
gation of ultrasound. In the relaxation model, the relaxat
time t may be taken to be of the order of the mean flig
time of particles, where the mean speed is of the order of
speed of sound. Then, we have
©2001 The American Physical Society09-1
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t5
a

rAT
, ~1.4!

where a is a constant that depends on the collision cr
section and the gas constant and we have ignored a pos
dependence of the particle cross-section time on par
speed.

The results in Paper I are based on an expansion int, up
to first order. Those expansions led to a pressure tensor

P5Fp2mS D ln T

Dt
1

2

3
“•uD G I2m E, ~1.5!

where

p5RrT, ~1.6!

R is the gas constant,

Ei j 5
]ui

]xj
1

]uj

]xi
2

2

3
“•u d i j , ~1.7!

m5tp ~1.8!

is the viscosity, andD/Dt5] t1u•“. The result form, to-
gether with Eq.~1.4!, implies Maxwell’s conclusion that vis
cosity does not depend on density for simple gases. For
heat flux, we obtained

Q52h“T2hT“ ln p2
5

2
m

Du

Dt
, ~1.9!

whereh5 5
2 mR is the conductivity. Both Eq.~1.5! and Eq.

~1.9! carry errors of ordert2 that are not indicated explicitly
These formulas forP andQ are not expressed explicitl

in terms of the fluid fields. Rather, their expressions invo
some of the same time derivatives of these fields that ap
in the fluid equations. Here is the central difference betw
our results and those obtained in the Chapman-Enskog
proach. In the latter, partial derivatives with respect to ti
are eliminated by the use of lower order results. Though
do not use that elimination procedure in deriving the clos
relations, we can nevertheless readily recover the Nav
Stokes results from ours, whent→0, as we described in
paper I. However, even though both theories formally ha
first-order accuracy int, the results from them are signifi
cantly different at Knudsen numbers of order unity, as
shall see in what follows.

II. THE LINEAR THEORY

We consider the evolution of perturbations on a unifo
medium and define perturbation variablesf,u, and Ã
through the relations

r5r0~11f!, T5T0~11u!, and p5p0~11Ã!,
~2.1!

wherer0 , T0, andp0 are the constant background values
the thermodynamic fields. The perturbation quantities
04630
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have small amplitudes with, for example,ufu!1. From the
linearization of Eq.~1.6! we obtain

Ã5f1u. ~2.2!

We further assume that there is no background motion
that u is small and needs no subscripts.

In analogy with Eq.~2.1! we write for the pressure tenso
the linearized form

P5p0I1T, ~2.3!

where

T5ÃI2t~] tu1 2
3“•u!I2tE, ~2.4!

wheret is evaluated for the state variables of the backgrou
medium andE is small. Similarly, since there is no zerot
order heat flux, we get for the linearized heat flux,

Q52h0T0“~u1Ã!2 5
2 m0] tu. ~2.5!

The quantitiesm05tp0 andh0 are the viscosity and conduc
tivity evaluated in terms of the state variables for the co
stant background medium.

The linearization of Eq.~1.1! is

] tf1“•u50. ~2.6!

A compact form of the linearized Eq.~1.2! is

r0 ] tu1p0“•T50. ~2.7!

When we take the divergence of Eq.~2.7! and use Eq.~2.6!,
find that

r0] t
2f2p0““:T50. ~2.8!

From Eq.~2.4! we find that

“•T5“Ã2t] t“u2 2
3 t“•~“•u…2t“•E. ~2.9!

We see from Eq.~1.7! that

“•E5“

2u1 1
3“•~“•u!. ~2.10!

Then, with the help of Eq.~2.6!, we find

“•T5“Ã2t] t“~u2f!2t“2u. ~2.11!

On using Eq.~2.6! again, we find that

““:T5“

2Ã2t] t“
2~u22f!, ~2.12!

which we may introduce into Eq.~2.8!. Next we define the
Laplacian speed of sounda and the kinematic viscosityn0 as
in

a25
p0

r0
and n05

m0

r0
. ~2.13!

We then obtain the dissipative wave equation
9-2
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~] t
22a2

“

222n0] t“
2!f1~n0] t2a2!“2u50.

~2.14!

To complete this discussion, it is useful to introduce t
thermal diffusivity

k05
h0

r0Cp
, ~2.15!

whereCp5 5
2 R. Thus,h0T05 5

2 p0k0. This is used in the lin-
earized heat equation,

3
2 p0] tu1p0“•u1“•Q50, ~2.16!

where we may write

“•Q52 5
2 p0k0“

2~f12u!1 5
2 r0n0] t

2f. ~2.17!

Sincen05a2t, we then find

S t] t2
10

3

a2t2

s
“

2D u1S 5

3
t2] t

22
2

3
t] t2

5

3

a2t2

s
“

2Df50,

~2.18!

where

s5
n0

k0
~2.19!

is the Prandtl number of the undisturbed medium.
Finally, to further simplify the appearance of these form

las, we let the unit of time bet and the unit of length beat.
Then our linearized equations for sound waves are

~] t
22“

222] t“
2!f1~] t21!“2u50, ~2.20!

S 5] t
22

5

s
“

222] tDf1S 3] t2
10

s
“

2D u50. ~2.21!

For comparison we note that the analogous linear equat
for the Navier-Stokes case~with zero bulk viscosity! are

~] t
22“

22 4
3 ] t“

2!f2“

2u50, ~2.22!

22] tf1S 3] t2
5

s
“

2D u50. ~2.23!

III. THE DISPERSION RELATIONS

We may seek solutions to the linear equations~2.20! and
~2.21! in which f and u vary like exp(ikx2st). Since the
mean free path is the unit of length, the wave numbek,
which is nondimensional, is effectively the Knudsen numb
for this problem. The dispersion relation is

~315k2!s32S 10

s
21D k2s215S 5

s
k211D k2s2

5

s
k450.

~3.1!
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For comparison, we report that the dispersion relation for
Navier-Stokes equations is

3s32S 5

s
14D k2s215S 4

3s
k211D k2s2

5

s
k450.

~3.2!

A. Frequencies

To get a feel of what these results mean, we look at f
modes for whichk is real. Then we sets5 iv1a wherea
andv are also real. When we introduce this into Eq.~3.1! we
find that there is a~thermal! mode withv50 and a pair of
~acoustic! modes whose frequencies satisfy

v253a22
2~102s!

s~315k2!
k2a1

5~s15k2!

s~315k2!
k2, ~3.3!

which gives the frequencies of sound waves. As we m
confirm, a is of order unity for largek and it grows in pro-
portion tok2 for smallk. Hence, for both very large and ver
small k, the last term on the right of Eq.~3.3! is the largest
one on that side. So we may write the uniform approximat

v25
5~s15k2!

s~315k2!
k2. ~3.4!

For small k, this gives the phase speedv/k56A5/3,
which is the usual speed of sound for an adiabatic so
wave, as is to be expected for very long wavelengths.
largek, we obtain the phase speedv/k56A5/s.

For the NS equations with zero bulk viscosity there is t
same number of modes: a thermal mode with zero freque
and sound waves with

v253a22
2

3 S 5

s
14D k2a1

5

3 S 4k2

3s
11D k2. ~3.5!

As expected, the two sets of equations agree in the limi
very smallk, where the NS equations return the phase sp
6A5/3. But for largek, the differences between the tw
theories become qualitative. With the Navier-Stokes eq
tions, we find that at largek, instead of reaching a finite limit
the phase speed is proportional tok for largek. As we shall
see when we look at the experimental results, the NS pre
tion is qualitatively wrong; the phase speed goes to a fin
value at largek.

B. Damping rates

The equation for the damping rate is

~315k2!a32S 10

s
21D k2a22F3~315k2!v2

25S 11
5

s
k2D k2Ga1S 10

s
21D k2v22

5

s
k450. ~3.6!

For the thermal mode, for whichv50, we find the damp-
ing ratesa5k2/s for small k anda51/5 for largek. Thus,
9-3
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there is very little damping for long waves while short wav
are damped on the collisional time scale. Moreover, on
amination of these two limits, we see that they both eme
from the balance of the same two terms in Eq.~3.6!. Hence
we may write the approximate formula

a5
k2

s15k2 ~3.7!

as a reasonable approximation to the damping rate for ak,
in the thermal mode.

Similarly, in the case of sound waves, we see thata is
also the result of the balance between the same two term
Eq. ~3.6! in the limits of large and smallk. Hence, we find
that for sound waves, to good approximation, the damp
rate is given by

a5
~102s!k2v225k4

3s~315k2!v225k2~s15k2!
, ~3.8!

where v is given in Eq.~3.4!. For long wavelengths, the
damping is again slight since it goes to zero like@(7
2s)/(6s)#k2. For largek, we obtain the finite limita5(5
2s)/(5s).

For the Navier-Stokes equations, the damping rate
given by

3a32S 5

s
14D k2a21F5S 4k2

3s
11D k229v2Ga

1S 5

s
14D k2v22

5

s
k450. ~3.9!

The damping rate for the acoustic modes also goes likek2

for small k for both the thermal mode and the acous
modes. For the acoustic modes, the damping rate ia
5@(2s11)/(3s)#k2, so that we get the same wave numb
dependence, but with a different coefficient than is obtain
from our equations in the smallk limit. However, for increas-
ing k, the NS damping ratesgrow like k2 for sound waves,
which is in disagreement with experiment@9#.

IV. COMPARISON WITH EXPERIMENT

Though the study of free modes in the previous sectio
intuitively clear, it does not directly represent the way e
periments on sound propagation are usually carried out
the experiments, it is more typical that one drives the fluid
a real, fixed frequency and then studies the propagatio
waves in space. The forcing may be accomplished by vib
ing the end wall of a tube containing gas at a fixed~real!
frequencyv and observing the propagation down the tub
To model this procedure in full detail would involve a caref
treatment of the forcing procedure, which usually requi
attention to boundary conditions. However, in this first
connaissance of the way our equations describe so
waves, we shall adopt a standard theoretical practice@1# and
simply fix the wave frequencyv in the dispersion relation
and compute the resultingk, which will typically be com-
04630
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plex. Thus, in Eq.~3.1! we let s5 iv and we find that the
equation fork becomes

5

s
~125iv!k41F5iv325iv2S 10

s
21Dv2Gk213iv350.

~4.1!

We may similarly obtain such an equation for the NS ca
Eq. ~3.2!. In order to emphasize the results for large Knuds
number we plot the results in the manner used, for exam
by Cercignani@4#. That is, we introduce the quantity

K25
5k2

3v2 , ~4.2!

whereK is a normalized inverse propagation speed. The f
tor 5/3 is included so that the phase speed is nondimens
alized on the Laplacian~or adiabatic! speed of sound, rathe
than the Newtonian~or isothermal! speed of sound as above
Then we find that

~125iv!K41
s

3 F5i S v2
1

v D2S 10

s
21D GK21

5s i

3v
50.

~4.3!

To see how this representation contains the results for
modes, we note that, in the limitv→0, Eq.~4.3! reduces to
K251. That is, for low frequencies, the usual adiaba
sound speed is recovered. In the~more interesting! opposite
limit, v→`, we obtainK25s/3 for the propagative modes
Thus we see that, in the limit of forcing at high frequenc
sound waves propagate with phase speeds6As/3, indepen-
dently of frequency. The data shown in the accompany
figure ~Fig. 1! confirm this independence of frequency~or
wave number! of the speed of propagation of ultrasound. T
observed nondimensional phase speed is 0.47.

The Prandtl number found from the relaxation model
kinetic theory, either by the methods of Chapman and E
skog or those described in paper I, is unity. With this valu
we obtain 0.51 for the limiting phase speed, so this rep

FIG. 1. The inverse phase velocity as a function of inverse
quency.
9-4
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sents a small quantitative error. However, the value os
found in kinetic theory depends on the atomic model us
that is, on the nature of the collision term. Though the rel
ation model gives the explicit value unity fors, the value
found with the traditional Boltzmann equation for ha
spheres is 2/3. This difference has nothing to do with
approximation method~our procedure givess52/3 when
applied to the Boltzmann equation! but is a consequence o
the nature of the form of the atomic interactions that
adopted. We therefore follow a common practice of putt
the empirical Prandtl number into the theoretical resu
when comparing with experiments. Since the experime
data we shall refer to are for noble gases whose valuess
are 0.6 or 0.7 we shall here adopt the values52/3 suggested
by the Boltzmann equation. When we use that value of
Prandtl number in evaluating the phase speed, we obtaK
5A2/350.471. Even without this adjustment, the results
the propagation of ultrasound are good, but we would p
pose to anyone thinking of using our equations from t
first-order development from the relaxation equation to int
duce this phenomenological improvement of the theory.

In the accompanying figure~Fig. 1!, we show the varia-
tion of ReK as a function of 1/v from a number of sources
The experimental values@10,11# are indicated as individua
points~the diamonds! and they appear to be tending toward
nonzero constant value at high frequency. This is qual
tively in accord with our results, here shown as a solid l
for the case ofs52/3, and it is in stark disagreement wit
the prediction from the Navier-Stokes equations~long dashes
with double dots!, which predict that ReK goes to zero like
,

s

f
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1/v. Since our limiting value for ReK was found to beAs/3,
the remarkable agreement of our results with experim
owes something to our using the experimental value of
for s for limiting value ReK→0.47. Nevertheless, eve
without this choice, the results would be adequate and c
parable to those shown for the moment method@12# with
16 215 moments~short dashes!. Other theoretical studies o
ultrasound are based on direct solution of the Boltzma
equation @4,2# and we show the results of Sirovich an
Thurber @13# obtained in this way~medium dashes!, for
which the Prandtl number automatically has the value 2/

V. CONCLUSION

In the study of the thermal damping of sound waves
electromagnetic radiation@14#, one finds that, for therma
times much less than the acoustic period, sound propag
at the isothermal speed of sound with negligible dissipati
In the opposite limit of long thermal times, there is also litt
dissipation, but propagation is at the adiabatic speed
sound. The experiments, and the solution of the Boltzm
equation show similar behavior when the relevant param
is the ratio of the collisional relaxation time to the acous
period. Our equations, as well as those of the mom
method~with tens of thousands of moments!, reproduce this
behavior but the Navier-Stokes equations do not. Moreo
when the Prandtl number is chosen to be that of the exp
mental gas, the quantitative agreement becomes very g
In the next installation of this series, we shall compute
profile of a stationary shock wave. As we shall see,
agreement with the experiments is good in that case too
,
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